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1. INTRODUCTION

Suppose that we are given a real-valued finite-horizon performance measure Y =

f(Xo,X 1,' " ,X,), where X = (X, : n > 0) is a Markov chain having initial distribution

i and transition matrix P. (We assume throughout this paper that the state space S is

finite, unless otherwise stated.) The standard way to estimate the expected performance

a = EY is to use a sample mean of i.i.d. replicates of the r.v. Y generated under initial

distribution p and transition matrix P.

However, importance sampling offers an alternative. Specifically, let v and K be,

respectively, an initial distribution and transition matrix chosen so that /(x) > 0 implies

v(x) > 0 and P(x, y) > 0 implies K(z, y) > 0. To indicate the dependence of the expecta-

tion operator of the Markov chain X upon the initial distribution and transition matrix,

we shall write Ep(.) to denote the expectation operator relative to initial distribution p

and transition matrix P, whereas EK(-) is the expectation operator in which the initial

distribution and transition matrix are given by v and K, respectively. Then, it is easily

seen that a = EpY can be written as
n-1

s=0

rAX0 n-1i' ]i+ n-1(1.1) - ' I (a0.,,)(Pu)x) 1-P(x,,x,+i)] ,z) ~ ,

If 0 ..... ,X v(zo) I K(x,,x,) V(X0) 11 K(zx,+i)

EKYLn

where

S(Xo) n P(Xi,,X+)L. =O
The r.v. Ln is known as the likelihood ratio (of Ep(.) relative to EK(.)). The identity

(1.1) suggests that a can be estimated by calculating i.i.d. replicates of the r.v. YLn

generated under initial distribution v, and transition matrix K. This technique is known

as the method of (static) importance sampling for Markov chains. (See Glynn and Iglehart

(1989) for a discussion of a related variant of importance sampling known as dynamic

importance sampling.)

Our goal in this paper is to show that this importance sampling technique is always

very poorly behaved from a variance standpoint when the time horizon is large. In fact,
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we will show that for a wide variety of performance measures, the variance essentially

grows exponentially rapidly in the length n of the time horizon. This result suggests

that (static) importance sampling of the kind described above is typically going to be

(highly) inefficient when the time horizon is large. While this conclusion is suggested by

some previous analyses (see, for example, Glynn (1987)), our current treatment permits

a rather precise quantitative characterization of the statistical inefficiency of importance

sampling in such a context.

These results are of interest in at least three different problem settings.

Setting I (Variance Reduction): By choosing v and K judiciously, one hopes that the

estimator obtained via importance sampling will have a corresponding variance that is

significantly lower than that of the standard estimator. This expectation is borne out

in certain applications contexts. (See, for example, Goyal et al (1990).) However, our

results suggest that one needs to proceed with caution in applying importance sampling

to performance measures in which the time horizon is large.

Setting 2 (Gradient Estimation): As is well known (see, for example, Glynn (1986a) and

Glynn (1987)), formula (1.1) underlies the likelihood ratio method for estimating gradients

of mean performance measures with respect to vectors of continuous decision parameters.

In Section 6 of this paper, we will discuss the implications of our results for such gradient

estimation problems. Our results will show that when the time horizon corresponding to

the performance measure is large, there is a best possible choice for K and we will identify

the optimal transition matrix.

Setting 3 (Optimization): The likelihood ratio gradient estimator mentioned above can

be used for optimization purposes. Two different approaches can be followed. One method

involves developing a stochastic recursive algorithm (such as the Robbins-Monro stochas-

tic approximation scheme) which is driven by newly generated likelihood ratio gradient

estimators at each iteration (see, for example Glynn (1986b)). The second idea is to use

importance sampling to generate via simulation, at a single point in the decision parameter

space, an estimate to the entire response surface. Typically, the estimated response surface

3



will be (at least) twice continuously differentiable. Thus, one can attempt to estimate the

optimizer of the true surface by applying deterministic optimization algorithms (such as

Newton's method) to the estimated response surface (see Rubinstein and Shapiro (1989)

for further details). It turns out that the gradients associated with the estimated response

surface are precisely the likelihood ratio gradient estimators of Setting 2. In Section 6,

we describe this connection more fully and discuss the implications of our results for this

approach.

The remainder of this paper is organized as follows. In Section 2, we describe a formula

for the variance of an arbitrary estimator obtained via importance sampling. This formula

is fundamental to our subsequent analysis. In Sections 3 through 6, we apply the formula

to: cumulative costs (Section 3), terminal costs (Section 4), steady-state costs (Section 5),

and likelihood ratio gradient estimators (Section 6). Finally, in Section 7, we describe the

implications of the theory developed in this paper for general discrete-event simulations.

2. A FORMULA FOR THE VARIANCE

Given that we apply importance sampling with initial distribution v and transition

matrix K to the estimation of a, the variance will be given by

VarK[YL,] = EKY'L2 - (EKYL,) 2

(2.1)EYL -ay2 2 _ 2.
EKY L,,-

Since a is independent of K, our goal is to simplify the expression for EKY 2 L'. In pursuit

of this objective, we note that

(2.2) EKY2 L= 2v(Xo) I K(xi,i+)

Let G = (G(x,y) : x,y E S) be the matrix in which G(x, y) = P 2(x, y)/K(x, y) when

P(x, y) > 0 and G(x, y) = 0 when P(x, y) = 0. Assume that the stochastic matrix P is

irreducible. Then, G is necessarily irreducible. Since G is clearly non-negative, we may ap-

ply the Perron-Frobenius theory for non-negative matrices to the study of G. In particular

(see Karlin and Taylor (1975)), it can be asserted that G possesses a positive eigenvalue

A = A(G) (known as the Perron-Frobenius eigenvalue) such that A is the eigenvalue of
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maximum (complex) modulus. Furthermore, there exists precisely one linearly indepen-

dent column eigenvector associated with A. This eigenvector h can be chosen to be strictly

positive in all components. Since h is the eigenvector corresponding to A, it follows that

G~x y~~y)= Ah(x)

for x E S. Hence,
G(x, ) h(y)-1

Let R = (R(x,y) z,y E S) be the matrix in which R(x,y) = G(x,y)h(y)/(Ah(x)). Then,

R is non-negative with row sums equal to 1, and is hence stochastic. Furthermore, R is

irreducible since G is. Noting that

G(x, y) = Ah(x)R(x, y)/h(y),

it is evident that

t-I n-I

(2.3) f G(xi,xi+) = A h(xo) I- R(xixi,+).,=o ~ ~h(x.) =-O(, +)

Let 7= (77(x) : x E S) be the stochastic vector defined by

7(0) = Y-'A 2()/V(Z),

where = ,.,. 2(x)/v(x). With the aid of (2.3), we may now express (2.2) as

n-I

EKY 2 L -=-7 A" Z f 2 (zo,.. .,x,)7(xo) II R(xi,xi+,)h(xo)/h(X,)

=..AER 2(Xo,.,Xn)Oh(XO)I h(Xo)

where ER(-) is the expectation operator associated with initial distribution q7 and tran-

sition matrix R. We summarize our discussion with the following variance identity the

specialization of this formula to r.v.'s Y that are additive functionals is implicit in much

of the large deviations discussion given in Bucklew (1990).
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THEOREM 1. If P is irreducible, then

VarK[YLn] = yA'ER[Y'h(Xo)/h(Xn)] - a',

where -, A, h, and R are defined as above.

Typically, the magnitude of Y is polynomial in n (see Sections 3 through 6). Thus,

the variance of YL, is determined by the exponential behavior of \" (if \ # 1). Our next

proposition tells us that A is typically strictly greater than 1. Hence, if Y is of polynomial

order in n, it is evident that varK[YL,,] is basically increasing geometrically fast at rate A.

PROPOSITION 1. The quantities 7 and A are always greater than or equal to 1.

Also, 7 > 1 if y 6 v. Furthermore, suppose P is irreducible. Then, A > 1 if P # K.

For the proof of Proposition 1, see the Appendix. Thus, we may conclude that in any

non-trivial importance sampling context (i.e. P # K), the sequence of multipliers 7 " is

growing geometrically fast. Hence, in order that varK[YL'] be well-behaved as a function

of n, it is evident that ER[Y 2 h(Xo)/h(X)] must be small. For example, if Y = I(A),

where A is a "rare event" under R, varK[YLl] can still be of moderate size (see Cottrell

et al. (1983)). However, as we will see in Sections 3 through 6, importance sampling in

most other problem settings leads to geometric growth in the variance.

3. APPLICATION 1: CUMULATIVE COSTS

Let f be a real-valued function defined on the state space S of the Markov chain

X. Suppose that the performance measure is the cumulative cost corresponding to the

function f, namely
n-1

Assume P is irreducible and aperiodic. Then, Theorem 1 applies that

(3.1) varK[YLn] =y"ER[Yh(Xo)/h(Xn)] -

where a = EpYn. Since Y,, <5 n -I1f1, where Ilf1l = max{jf(x)l : x E S}, it is evident

that a2 = 0(n 2) as n -4 oc. If K y P, Proposition 1 states that A > 1 so that it is evident

that the growth of the variance is governed by 7fAnER[Ynh(Xo)/h(X,)].
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Note that R inherits the irreducibility and aperiodicity of P. Then, we can assert

that R has a unique stationary distribution IrR(.). Let PR(') = ER[I(.)] be the probability

distribution on X associated with initial distribution 77 and transition matrix R. We

can apply Theorem 4 of Niemi and Nummelin (1982) to conclude that there exist finite

constants/3 = 7 lrR(X)f(x) and a2 such that for any t E R and z, y E S,

PR{nJ(Y./n - 0) _ t,X. = zlXo = z}

-- P{N(O,R) < t}7rR(Z)

as n - oo, where N(O,a4) is a normal r.v. with mean zero and variance a. Since (3.2)

holds for all x, it is evident that

PR{Xo = x, ni(Yn/n - /3) 5_ t, Xn = z}

-- 1(x)P{N(O, A ) < t} 7rR(z)

as n --+ oo. Note that the r.v.'s X, n1(Yn/n-/3), and Xn are all asymptotically indepen-

dent under PR('). The continuous mapping principle, together with a converging-togeth.

argument (see, for example, Billingsley (1968)), therefore proves that under the distribu-

tion PR(.),

(3.4) (Y,/n )2h(Xo)/h(Xn) =,, #2h(Xo)/h(X.)

where X,, is a r.v. with mass function rR and X0 and X, are independent. Since

Ih(Xo)/h(X,)l 5 maxlh(x)/h(y) x,y E S) <00, we can apply the bounded convergence

theorem to (3.4), yielding

(3.5) n-2 ER[Yn h(Xo)/h(X,)] _-*/2,qt 2,

where tc1 = " 7(x)h(x) and X2 = Z'. irR(X)/h(x). If 0 ? 0, (3.5) provides the asymptotic

estimate that we need (since the strict positivity of h implies that K1 , K2 > 0). If 3 = 0,

we note that (3.3) proves that under PR,

7 2 1(Yn/n') h(Xo)/h(Xn) = R N(O, 1)h(Xo)/h(X.),



where N(0, 1),X0, and X,, are independent r.v.'s. Theorem 3, p. 102, of Chung (1967),

together with the boundedness of h(Xo)/h(X,), then yields the conclusion that if/= 0,

n-1'E R [Y 2 h(X o)lh (X .)] _+ a2KII2

as n --+ oo. We can summarize our discussion thus far with the following theorem.

THEOREM 2. Suppose P is irreducible and aperiodic. Then,

i) if/ # O and P 6 K,

varK[YnLn] n27An,32 II t2

as n --+ oo;

ii) if /3 = 0, P 0 K, and aR >0,

varK[YflLfl n-AR~ K2 ,

as n --+ oo.

Typically, we would expect 0 6 0 to hold in most practical settings, in which case the

variance grows as n2An.

It is instructive to also describe the asymptotic distribution of the r.v. YL,. Let

PK(') = EK[I(.)] be the probability distribution on X associated with initial distribution

v and transition matrix K. Then,

log(Ln) = log [ -o) + n-- log K(Xi,X,+)J

Applying the law of large numbers to the finite chain (Xn, Xn+l ), we conclude that

1 log rn "+ -'r(x)K(x)log[P(x ',y)1 A
n 4 ?rK~xK ,y)lg jK(x, y)j

PK a.s. as n --+ oo. If P # K, the strict concavity of the log function implies that

< log T= x x )PX ) log 1=o0,

K(x,y)
8



so that in this case,

(3.6) --+ exp() < 1.

PK a.s. as n -- oo. For an arbitrary function g, let 1g1 = sup{Ig(x)I x E S}. Since

IYnI < n. IIfII, it is evident that IYLI* < n*iIfII*" L, so that (3.6) yields

(3.7) limnIYLnI < 1

PK< a.s. Fix 0 < - < 1. Hf limIY,,L,, >_ e, then

liMn IYnLn In > C = 1,

contradicting (3.7). Thus, (3.7) implies that limIYnLnI = 0, so that

(3.8) YnL, - 0

PK a.s. as n --+ cc, whenever P 5 K.

This gives us a more complete description of the asymptotic behavior of the r.v. Y,,1,L

While (3.7) and (3.8) state that YL, is very small (with high probability) when n is large

Theorem 2 asserts that when YnLn is large (with small probability), it must be extremely

large (in order that the variance grow geometrically fast). Thus, for large n, YnLn is a

r.v. that takes on extremely large values with very small probability and small values with

very high probability.

4. APPLICATION 2: TERMINAL COSTS

As in Section 3, let f be a real-valued function defined on the state space S of the

Markov chain X. In this section, we are concerned with the terminal cost corresponding,

to the function f, namely

Yn= f(Xn)

Assume P is irreducible and aperiodic. We may then apply Theorem 1 to obtain the

identity

(4.1) var,[YL,] = YAnER[f 2(Xn)h(Xo)/h(X,)] -2

9



where a. = EPY.- Since R is aperiodic (by virtue of the aperiodicity of P), it is evident

that for each x E S,

(4.2) PR{Xn =- yIXo = X} -+ 7rR(y)

as n -- oo. Relation (4.2) implies that

(4.3) PR{Xo = X,X, = y} --+ ?(z)lrR(Y)

as n cc. Thus, X0 and X, are asymptotically independent r.v.'s. Applying the contin-

uous mapping principle to (4.3), we conclude that

(4.4) f2 (X,,)h(Xo)/h(X,,) = , f2(X,.)h(Xo)/h(X.,)

as n --+ cc (in PR distribution), where X0 and X. are independent r.v.'s (with X, having

distribution irR). The bounded convergence theorem then implies that

ERlf 2(X,)h(Xo)/h(X,)] -- KC3

as n --+ oc, where K, = Y 7(x)h(x) and K3 = E. rR(x)f 2(x)/h(x). This discussion has

yielded the following theorem. (Note that an is bounded.)

THEOREM 3. Suppose P is irreducible and aperiodic. If f : 0 and K : P, then

varK[f(Xn)Ln] -yA" 1 K 3

as n -- oo.

The argument employed in Section 3 to study the "almost sure" behavior of YnLn is

equally applicable here. In particular, if K # P, we may conclude that

f(X,)Ln -- 0

PK a.s. as n -- cc. As in the case of cumulative costs, it therefore follows that when the

time horizon n is large, f(X)Ln takes on extremely large values with small probability

and very small values with high probability.

10



5. APPLICATION 3: STEADY-STATE COSTS

In this section, we apply the results of Section 3 (on cumulative costs) to the analysis

of importance sampling for steady-state costs. Given a real-valued function f defined on

the state space of X, let
n-1

Y Ef(Xk)
k=O

be the cumulative cost corresponding to the function f. Let Pp(-) = EpI(.) be the

probability distribution on X associated with initial distribution M and transition matrix

P. Assume that P is irreducible and aperiodic. Then, the law of large numbers applies to

Yn and we may assert that

(5.1) .Y/n - irp(x)f(x) r

Pp a.s. as n -- oo, where lrp(.) is the (unique) stationary distribution of P. The constant

r may therefore be interpreted as the steady-state cost associated with the performanct

measure f. We note that the bounded convergence theorem applies to (5.1), yielding

Ep[Yn/n] -- r

as n -- oo. Since Eprn = EKLnYn, it follows that

EK[YnLn/n] -+ r

as n -- oo. Hence, the r.v. YnLn/n (when generated under PK) can be used as an estimator

for the steady-state mean r.

In particular, suppose that T represents the computer budget available to estimatc

the steady-state mean r. To simplify our analysis, we assume that exactly one transition

of the chain X is generated per unit time. Given the budget T, we can generate (under

PK) m = m(T) replicates of the chain X, each of length n(T), where n(T) = LT/m(T)J.

This results in the estimator

I e(T)

r(T) = Z Yi,(T)Li(T),

11



where Yin(T)Lin(T) is the i'th independent replicate of the r.v. Yn(T)Ln(T). The mean

square error (MSE) of r(T) is given by

(5.2) MSEK[r(T)] = varK[r(T)] + biasK[r(T)])2 ,

where biasK[r(T)] = EKr(T) - r. We note that

varK[r(T)] = ---- varK[Yn(r)L.(T)

biasK[r(T)] = Ep[Yn(T)/n(T)] - r.

In our subsequent analysis of (5.2), we shall assume that n(T) -+ oo as T -* oo. (In

virtually all practical applications, this is necessary in order that the MSE converge to

zero as T -+ oo.)

Now, Theorem 2 states that if P $ K and/3 # 0, then

(5.3) varK[r(T)I , - 7132 KKI2 n(T)An(T) I T .

To analyze the bias term, we recall that we are assuming that P is aperiodic and irreducible.

Then, it is well known that Epf(Xn) --+ r geometrically fast, and hence

00

b = Z(Epf(Xn) - r)
n=O

converges absolutely. Hence, there exists p E [0, 1) such that

Ep[Yn/n] - r = b/n - -(Epf(X) - r)/n
j=n

= b/n + O(pn)

as n - oo. Thus, if b 0 0 (as is typical in most applications), it is evident that

(5.4) (biaSK[r(T)] )2 - b2/In 2(T)

as T - oo. The following theorem is easily verified from the asymptotic formulae (5.3)

and (5.4).

THEOREM 4. Suppose that P is irreducible and aperiodic. Assume b 0 0, /3 $ 0,

P # K, and that n(T) -* +oo.

12



i) If n(T)- (logT-loglogT)/log A - +oo as T- 0 0, then

varK[r(T)] - +oo, biag[r(T)] -- 0

as T-- oo.

ii) If n(T) - (logT- 3loglogT)/log, -A +oo as T -- oo, then

(log T)2varK[r(T)] -- oo, lim (log T)2 bia2 [r(T)] _< (log A)2b2

as T -- oo.

iii) If n(T) - (logT - 3log log T)/logA --+ a as T -- oo, then

(log T) 2 varK[r(T)] __ _/Y2 Klr-2e", (log T)2bias2K[r(T)] __ (log A)2 b2

as T--+ oo.

iv) If n(T) - (logT - 3log log T)/ log A -oo as T - oo, then

(log T) 2varK[r(T)] -- 0, lim (log T)2bias2[r(T)] (log A) 2b2

as T --+ oo.

v) If n(T) - clogT, where 0 < c < 1/logA, then

(log T) 2varK[r(T)] --+ 0, (log T)2bias2 [r(T)] -b. 
c'

as T - oo.

This result has a number of important implications. Firstly, we note that part i) states

that if n(T) - (log T - log log T)/ log A --* oo, MSEKr(T) -4 oo, so that if the replicatioi-

run-length n(T) grows too quickly, the mean square error need not even converge to zero.

This is particularly problematic in light of the fact that log A is typically unknown.

Parts ii) through iv) suggest that n(T) - (log T - 3 log log T)/ log A + a defines the

critical case in which both components of the mean square error (namely variance and the

squares bias) go to zero at the same rate, namely (log T)- 2 .

Finally, the theorem (taken as a whole) suggests that the best possible convergence

rate for the root mean square error of r(T) is (log T) - 1 as T --+ 00. Thus, the convergence

13



rate of the replicated steady-state importance sampling estimator is exceptionally slow

(when compared to the rate of T-1 which is achieved for typical steady-state simulations

when implemented without importance sampling).

The poor convergence rate of r(T) basically arises because of the exponential growth

in the variance of YnL,.. One way to (partially) avoid this is to use the regenerative

structure that is present in finite-state Markov chains. This allows us to reduce the time

horizon to that of a regenerative cycle. Specifically, select a regeneration state x and let

r = inf{n > 1 : Xn = z}. Thus, if we set y = b. (i.e. a unit point mass at x), we recall

that the steady-state cost r can be represented as

r = EpY/Epr
(5.5)

EK[YLI/Ep[-rL,].

As suggested in Glynn and Iglehart (1989), one can use importance sampling to estimate r

via the ratio formula (5.5). Let (Y,, rl, L 1,), (Y 2,, r2 , L2,),... be a sequence of i.i.d. repli-

cates of (Y, -r, L,) (generated under PK). Suppose that the time required to generate the

i'th cycle is ri and let N(T) = inf{n > 0 : "'=1 ri < r} be the number of cycles completed

in T units of computer time. Let r'(T) be the ratio estimator available after T units of

computer time have been expended, namely

N(T)

N() ; N(T) 1r'(T) = NMr

Z riLi,
i=1

0; N(T) =0.

In Glynn and Iglehart (1989), it is shown that if EKZ 2 < oo, where Z = (Y, -rr)Lr, then

T 4 (r'(T) - r) = dN(O, 1)

as T --+ oo, where d2 = EKr .EKZ 2 /(Epr)2. Thus, the regenerative estimator r'(T) enjoys

a convergence rate of T - 1/2, provided that EKZ 2 < o. Unfortunately, as argued in Glynn

and Iglehart (1989), the quantity EKZ 2 can be infinite (even in the current finite state

Markov chain setting).
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We can use the machinery developed in this paper to obtain a precise analysis of when

EKZ' < o will hold. Let fe(x) = f(x) - r and observe that Z = YL,, where

n-i

Y. = E fc(Xk).

k=0

Then, for each n > 1, Theorem 1 applies, yielding

.)EK[YLI(r = n)] = 7AnEK Y2 h(Xo) r= n)(5.6) K [Yn lnh(Xn) I(T I

Summing each side of (5.6) over n and using Fubini's theorem, we get the identity

(5.7) EKZ2 = 7ER A (E:fc(Xk)) •

(We've used the fact that h(Xo) = h(X,.) and that PK{r < oo} = PR{1 < oo} - 1 ir

obtaining (5.7)). In virtually all practical applications, it will therefore be necessary that

ERA' < o, in order that EKZ 2 < oc. Furthermore, if ERAS < 0o for some A0 >

this will always be sufficient to guarantee the finiteness of EKZ 2. (To see this, note that

ArY 2 < IfcII2r2Ar < 11f112A on {r > no}, where no is chosen sufficiently large.) Thu,.

the finiteness of EKZ 2 basically comes down to the issue of when the Perron-Frobenius

eigenvalue A = A(G) lies in the interior of the set {z E iR: ERZ' < o}.

Let A be the submatrix of R defined by A = (R(u, v) : u, v E S - {x}). (Note that A

has one fewer row and column than does R.) Clearly, A is non-negative. Suppose that A

is irreducible. Then, A has a unique positive Perron-Frobenius eigenvalue A(A).

PROPOSITION 2. Suppose that A is irreducible and finite. Then, ERA" < 00 if and

only if A(G) < A(A) - '.

For the proof, see the Appendix.

Thus, the slow convergence rate of the replicated steady-state estimator r(T) manifests

itself in the regenerative setting through the possibility of infinite variance. If EKZ 2 =

+oo, one can not expect a convergence rate of T-'5, but must instead expect a slower

rate of convergence. As we have just argued, in order that EKZ 2 < 00, this will typically

require that A(G) < A(A) - 1 . Unfortunately, since A(G) and A(A) are unknown in practical
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settings, this suggests that a great deal of care must be exercised in applying importance

sampling using the regenerative estimator r'(T).

6. APPLICATION 4: LIKELIHOOD RATIO GRADIENT ESTIMATOR

Consider a family {(P(8), p(0)) : $ E A} of transition matrices and initial distributions

on S that are indexed by some open set A C Rk. As mentioned in the Introduction, the

calculation of the gradient of the expected performance of the Markov chain with respect

to 0 is a problem that has recently attracted considerable attention within the simulation

community.

One approach to this problem is known as likelihood ratio gradient estimation. In

order to simplify the notation, we specialize (without any essential loss of generality) to

the scalar case in which k = 1. Given a performance measure Y = f(Xo, Xl,... , X,,), its

expected value under initial distribution j4(9) and transition matrix P(O) is given by

n-iVO)-fX,-,npo.OIt e(o,x,,x,+,).
X0O,... 1z" i-=O

Assume that P(8) and It(O) are both continuously differentiable on A. Then, for 8 E

A, a'(00) exists and is given by

n-ia'(80) = (Xjj f~ ... 7Xn ) [i'(8Oo Xo) 17 P(O,xi,,xi+i)+

(6.1) zo ... , n- i=o
n--1

POX)E POO,1X+0I P(OO, j +0
i=0 ji

In order to estimate a'(0o) via simulation, it is necessary to represent a'(0o) as an expec-

tation. Suppose that we select v such that v(x) > 0 whenever j'(00, x) # 0 or 1'(Oo, x) > 0

and select K so that K(z, y) # 0 whenever P'(0o, x, y) # 0 or P(6 0 , x, y) > 0. An impor-

tant observation here is that, under our hypotheses, selecting v = ju(O) and K = P(O0 )

always fits this prescription. (The key point is that if P'(00 , x, y) # 0 when P(80 , x, y) = 0,

this implies that P(., z, y) is strictly negative in some neighborhood of 00.) Let Ee(.) be

the expectation operator associated with initial distribution y(f) and transition matrix

P(8). Then, (6.1) can be re-written as

(6.2) a'(Oo) = Eeo[YL' (0o)]
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where

L'(0) = '(O,XO) +n- P'(Oo,Xi,Xi+)n(100,XO) E P(OO,X,,X,+ 0

The r.v. L' (Oo) is known as the score function. We can now apply importance sampling

(see formula (1.1)) to (6.2), thereby yielding

(6.3) a'(Oo) = EK[YL,(Oo)L,],

where
Ln -= _ I" P(Oo,Xi,Xi+ 1 )

V(Xo) ifo K(Xi,Xi+1 )

The estimator based on YL'(0o)L, (when generated under PK) is called the likelihood

ratio gradient estimator.

Suppose P(Oo) is irreducible and finite. By Theorem 1, we arrive at the identity

(6.4) varK[YL'(Oo)L,] = 7AnER[y 2L'(Oo) 2h(Xo)/h(X,)] - a'(Oo)2

Since A > 1 if P(Oo) # K, (6.4) strongly suggests that the choice K = P(Oo) minimizes

the variance of the likelihood ratio gradient estimator when the time horizon is large.

To obtain a more precise statement, we need to specify the performance measure.

Specifically, let us consider a cumulative cost of the form

n-1Yn =E- y(xk),
k=O

where f is some real-valued function defined on the state space S of X. To analyze the

right-hand side of (6.4), we observe that the finiteness and irreducibility of R guarantees

that the following strong laws will hold:

n . rR(X)f(X W

(6 .5 ) P _ 0__ _ X_ _ _) _-L' (0o) -. r R(x)R(x, y) 0,,y -
n z

PR a.s. as n -+ oo. As in Section 3, one can show that Xo,Xn, and (Yn,L'(0o)) are asymp-

totically independent of one another. If P(Oo) is additionally assumed to be aperiodic, then

(6.5) and the continuous mapping principle implies that

n-4 Y2L'(Oo)2h(Xo)/h(X,,) =0, #2V2h(Xo)/h(X),
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as n --+ oo, where X,, is a r.v. having mass function 7rR(-). The bounded convergence

theorem then yields

ER[YL'(9O) 2 h(Xo)/h(X,)] _ 32V'2 KtC

as n --+ oo. We can summarize our discussion thus far with the following theorem.

THEOREM 5. Suppose that P(Oo) is irreducible and aperiodic. If K # P(80 ),

3 4 0, and 1k # 0, then

VarK[YnLtn(Oo)Ln] ,- ,f n n4/6202tCl tC2

as n --+ o.

In L'Ecuyer and Glynn (1991), it is shown that varo[Y,L'(0o)] is typically of order

n3 . Hence, Theorem 5 shows that choosing K # P(Oo) significantly degrades the variance

(for cumulative cost performance measures) when the time horizon is large.

We conclude this section with a brief discussion of the implications for optimization.

Assume that P(.) is such that if P(O, x, y) > 0 for some 8, then P(O, x, y) > 0 for all 0.
Similarly, assume that if M(0, x) > 0 for some 0, then u(8, x) > 0 for all 0. Suppose that,

as suggested in the Introduction, one simulates the Markov chain X under the distribution

P 00 associated with parameter point 00 E A. Then, we can obtain a global estimate for

a'(.) by using (6.3):

(6.6) '(0) = Eo. [YL'(O)L.(0, Oo)]

where
L'0' n 9'(O, Xo) n-IL" (O) = O O)+E P'(O, Xi, Xi+0

Ln(0,0o) = k(,Xo) 1I P(9,X, Xi+
I I P( 0 ,Xi,Xi+i)1(00, X0) ,=0 (o , ,I)

Note that by simulating at the single parameter point 00, we can obtain an unbiased

estimate for a'(0) at each 9 E A. However, as shown earlier, we can expect the variance
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of the estimator for a'(0) to increase geometrically (in the length of the time horizon) at

rate A(O), where A(O) is the Perron-Frobenius eigenvalue of the matrix G(O) = (G(0, x, y)

x, Y E S) and G(O, x, y) = P2(0, x, y)/P(Oo, x, y). Recall that

E G(,x, y)-1 1] 2 P(0oX, Y).

Thus, we can expect that as the distance between 0 and 8o grows, the row sums of G(O)

grow. Let (0) = mn{ , G(O, , y) : E S} and note that

G(o)e > b(e)e

where e is a column vector of l's. Perron-Frobenius theory implies that if P(Oo) is irre-

ducible, there exists a positive row vector x(O) such that x(O)G(O) = A(O)x(O). Hence,

A(0)x(0)e = z(0)G(0)e > S(O)x(O)e.

Since x(O)e > 0, it follows that A(0) _! 6(0). Thus, the growth of the row sums forces )(9)

to grow. So, we can expect that in many practical settings, A(0) will be large at points

0 that are distant from 0o. Thus, the geometric growth problem discussed above may be

particularly troublesome at points 0 that are distant from 00. This suggests that great

care needs to be taken with the development of optimization algorithms based on (6.6).

7. IMPLICATIONS FOR DISCRETE-EVENT SIMULATION

Thus far, our discussion in this paper has focused on the analysis of importance

sampling, as it applies to discrete-time finite state Markov chains. However, we believe

that the results presented here have obvious analogues in the more general discrete-event

simulation context.

The basic idea is that a typical discrete-event simulation, when considered on the time

scale of state transitions, can be viewed as a discrete time Markov chain living on a general

(uncountable) state space. In particular, suppose that we let S,, represent the "physical

state" (e.g., the location of the customers in a queuing network, as described by a queue-

length vector) of the system at the time of the n'th (physical) state transition. Also, let
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C, be the "clock reading" vector, at the time of the n'th transition. The ith component of

C, then describes the time that remains until the i'th possible trigger event will initiate a

state transition. The key observation is that X,, = (Sn, C,) is then a discrete-time Markov

chain; see Glynn (1983) and Glynn (1989) for further details. Of course, the state space

of this Markov chain is typically uncountable.

The analysis presented in this paper hinges on two important pieces of mathemati-

cal machinery. The first is the existence of the Perron-Frobenius theory of non-negative

matrices. Fortunately, much of this theory carries over to the more general setting of non-

negative operators acting on an abstract state space; see Chapter 5 of Nummelin (1984) for

a recent account of this theory. The second tool that was repeatedly applied was the limit

theory for additive functionals of finite state Markov chain (e.g., laws of large numbers

and central limit theorems). Again, these results have a number of generalizations to the

uncountable state space setting; see Niemi and Nummelin (1982) for a description of such

results.

Our view is therefore that, under suitable regularity hypotheses, the results of this

paper will carry over to the general state space setting, and hence to discrete-event simula-

tions. For example, we would expect (as in Theorem 2) that when importance sampling is

applied to a cost that is cumulated over the first n transitions of the system, the variance

will typically grow at rate n2 A" for some constant A > 1. In other words, the results

obtained in this paper are qualitatively representative of what one should expect in the

more general discrete-event simulation setting.
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APPENDIX

Proof of Proposition 1. Consider a typical row of the matrix G. Then, for each

x ES

G(z, y) - 1 - P 2 (z, y)/K(x, y) - 1
I I

(A.1) = [lP(X, y) K(x, y) >! 0.

Let B = (B(x, y) : x, y E S) be the stochastic matrix defined by

B(x, y) = G(z, y)/ E G(x, z),
z

and note that G(x, y) > B(x, y) for each x, y E S (since the normalization factor that

defines each row of B is greater than or equal to 1, by (A.1)). By Corollary 2.3, p. 551,

of Karlin and Taylor (1975), A = A(G) > A(B), where A(B) is the Perron-Frobenius

eigenvalue of B. But since B is stochastic, A(B) = 1. Hence, A > 1.

As for f, an argument similar to (A.1) shows that y - 1, with -Y = 1 if and only if

v = A.

It remains to show that A(G) > 1 if P # K. In this case, at least one row sum of G

is strictly greater than 1. Hence, there exists at least one state x. such that G(x., y) >

B(x., y) for each state y such that B(x., y) > 0.

Note that B is irreducible, since P (and hence G) is. Since B is stochastic, there

exists a unique strictly positive stochastic row vector W (the stationary distribution of B)

such that VoB = W. Furthermore, there exists a strictly positive column eigenvector h

corresponding to the Perron-Frobenius eigenvalue A = A(G) of G. Since Gh = Ah, it is

evident that

(A.2) pGh = Aph.

On the other hand, Gh > Bh with strict inequality in the x.'the component. (This follows

from the strict positivity of h.) Hence, WGh > pBh. (Here, we make use of the strict

positivity of p.) So, using the stationarity of V and (A.2), we get

A'ph > ,oBh = ph.
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We conclude that A = A(G) > 1 (since the positivity of p and h implies that oh > 0).

Proof of Proposition 2. The argument is very similar to that used in Section 2 to study

varK[YL.]. We note that

ERAr = A + A E R(x, y)ER[AIXo = y].

Recall that A necessarily possesses a strictly positive column eigenvector h' such that

Ah' = A (A)h'. Set C = (C(u,v) : u,v E S - {x}), where

C(uV) = A(u,v)h'(v)

A(A)h'(u)

Arguing as in Section 2, it is easy to see that for y x, n >1

PR{r = nIXo = y} = A(A)n-IEc h( )R(X-_.,x)IXo = y

where Ec(.) is the expectation operator in which X evolves according to the (stochastic)

matrix C. We therefore arrive, for y 3 x, at the identity

ER[ArIX0 = y] = A(A)R(y,z)
(A.3) 0[ "a r-,,h'(X)=+ A(A) E[A(G)A(A)]"Ec t ,=R(x.,X)lX0

Note that the expectations Ec(.) appearing in (A.3) are bounded above by

max{h'(u)R(v,x)/h'(v) : u,v E S - {x}} so that if A(G)A(A) < 1, (A.3) clearly con-

verges. On the other hand, there exists a sequence of the form I = {i + Im : m > 01

(depending on the periodicity of X under C) such that R(Xn, X) is bounded away from

zero for n E I. Since h' is strictly positive, this guarantees that the expectations Ec(') are

bounded away from zero on the subsequence I. Thus, in order that (A.3) converge, it is

necessary that A(G)A(A) < 1.
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